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1. Introduction

Since its formulation [1]–[3] there have been numerous tests of the AdS/CFT duality, see [4,

5] for reviews. Soon afterward the duality was extended to non-conformal field theories

obtained by deformations or vevs of the original CFT. In such cases the duality involves an

asymptotically AdS spacetime. However, quantitative tests of the correspondence in this

more general set up are rather scarce.

Perhaps one of the simplest cases to explore is that of the Coulomb branch of the

N = 4 SYM theory. The theory still possesses 16 supercharges and, as reviewed in [6],

supersymmetry protects the vevs from quantum corrections. This is thus an ideal case for

testing gravity/gauge theory duality away from the conformal point. Although it has long

been recognized that there is a one to one correspondence between (the near-horizon limit

of) multicenter D3 brane solutions and the CB of N = 4 SYM [7] a precise gravitational

computation of the vevs was never done (apart from in the specific cases reviewed below).

These solutions are determined by a harmonic function and Klebanov and Witten proposed

in [8] that the vevs can be extracted from the harmonic function. The results of this paper

confirm that expectation.

More quantitative progress has been achieved for the specific case of a distribution of

D3 branes on a disc. In this case there is an associated solution of the five dimensional

gauged supergravity [9] and using the technology of holographic renormalization [10] the

expectation values (and 2-point functions) of the stress energy tensor and of a dimen-

sion two gauge invariant operator were computed and shown to agree with field theory

expectations in [11, 12].
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The restriction to this subsector of operators was due to starting from the five dimen-

sional supergravity solution. More recently in [6] we have developed a precise holographic

map that allows one also to treat operators dual to fields that are not part of the five

dimensional gauged supergravity. Applying this map to the corresponding ten dimensional

supergravity solution we additionally computed the vev of a dimension 4 operator and

again found exact agreement with field theory. This was the first quantitative computation

of a vev of an operator dual to field that is not part of the 5d gauged supergravity.

In this letter we essentially solve the problem in its most general form. We consider a

point in the CB of N = 4 SYM characterized in the large N limit by a general distribution

of eigenvalues and we show that the gravitationally computed vevs of all gauge invariant

operators are in exact agreement with the field theory answer. We should note, however,

there is still an open technical issue regarding the cancellation of certain terms that was

checked only for a specific case (see the discussion in section 5).

Finally we point out that one can include non-normalizable terms in the harmonic

function appearing in the supergravity solution for separated D3-branes and these can also

be interpreted in AdS/CFT. Such terms correspond to deformations of the SYM theory by

half supersymmetric irrelevant operators of the form Tr(F 4Xk).

The paper is organized as follows. In the next section we discuss the field theory side of

the story. In section 3 we review the Coulomb branch solutions; in section 4 we summarize

the results from [6] whilst section 5 contains the holographic computation of the vevs for

the general case. In section 6 we propose a gravity dual for certain deformations of N = 4

SYM preserving 16 supercharges. The appendix contains a proof of the addition theorem

that is used in the extraction of vevs in section 5.

2. N = 4 SYM on the Coulomb branch

N = 4 SYM contains 6 scalar fields Xi1 in the adjoint representation of the gauge group

that we take to be SU(N). The Coulomb branch (CB) of N = 4 SYM corresponds to giving

a vacuum expectation value (vev) to the scalars subject to the condition [Xi1 ,Xi2 ] = 0. A

useful parametrization of the CB branch is in terms of vevs of composite operators. The

relevant operators here are the chiral primaries (CPOs),

OI1 = NI1C
I1
i1···ik

Tr(Xi1 · · ·Xik), (2.1)

where CI1 is a totally symmetric traceless rank k tensor of SO(6) which is normalized such

that
〈

CI1CI2
〉

= CI1
i1···ik

CI2
i1···ik

= δI1I2 and NI1 is a normalization factor. We choose this

factor such that the normalization of the 2-point functions computed in field theory and

in supergravity is the same

NI1 =
N

π2
2k/2(k − 2)

√

k − 1

k

(

2π2

λ

)k/2

; k 6= 2, (2.2)

where λ is the ’t Hooft coupling. Note the field theory computation of the 2-point functions

is done in the large N limit and with canonically normalized scalars. The k = 2 case is

obtained by replacing the factor of (k − 2) by 2.
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We now consider an arbitrary smooth unit normalized distribution of eigenvalues,

ρ(x), where x parametrizes R6. In the large N limit the trace may be evaluated via such

a continuous eigenvalue distribution

〈

CI
i1···ik

Tr(Xi1 · · ·Xik)
〉

= N

∫

d6xρ(x)(CI
i1···ik

xi1 · · · xik) (2.3)

giving the following formula for the vevs

〈OI1〉 =
N2

π2
2k/2(k − 2)

√

k − 1

k

(

2π2

λ

)k/2 ∫

d6xρ(x)(CI
i1···ik

xi1 · · · xik), k 6= 2, (2.4)

where again for k = 2 one replaces the factor of (k − 2) by 2. The aim of this paper is

to reproduce this formula from supergravity for all k and general eigenvalue distributions.

The non-renormalization of these vevs follows from the preservation of 16 supercharges, as

reviewed in [6].

Before proceeding let us briefly review the properties of a uniform distribution of

eigenvalues of X1 and X2 on a disc of radius a and vanishing vev for the remaining scalars,

〈X3〉 = 〈X4〉 = 〈X5〉 = 〈X6〉 = 0. In this case the vevs break the R symmetry from

SO(6) to SO(2)×SO(4). This example was recently discussed in some detail in [6] and the

corresponding vevs were shown to be equal to

〈

O2n
〉

=
N2na2n

2n
√

2n + 1
N (2.5)

where the operators here are the singlets under the decomposition of SO(6) into SO(2) ×
SO(4).

3. Coulomb branch solutions

A generic Coulomb branch solution describing a distribution of D3-branes is given by:

ds2 = H(x⊥)−1/2dx2
|| + H(x⊥)1/2dx2

⊥ (3.1)

F =
1

4
(dH−1 ∧ ω|| − ∗⊥d⊥H)

where ω|| is the volume form in the (flat) worldvolume directions and ∗⊥ and d⊥ refer to

the Hodge star and exterior derivative in the flat transverse directions and H is a harmonic

function,

¤H = 0. (3.2)

For the solution to be asymptotically AdS, H should behave to leading order as r−4 when

r → ∞, where r is the radial coordinate of the flat overall transverse direction. The most

general solution of (3.2) with these boundary conditions is

H =
∑

k,I

hkI
Y I

k (~θ)

rk+4
, (3.3)
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where the coordinates on the flat R6 are (r, ~θ) with ~θ labeling the coordinates on the S5.

Y I
k is a normalized spherical harmonic of degree k with I labeling its remaining quantum

numbers; normalized as

∫

S5

Y I1
k1

Y I2
k2

= π3 δI1I2δk1k2

2k1−1(k1 + 1)(k1 + 2)
≡ δI1I2zk1

. (3.4)

The leading order term is given by h00 = L4 = 4πgsN(α′)2 if the total number of D3-branes

is to be N , whilst by measuring distances from the centre of mass one can as usual choose

the k = 1 terms to vanish. We will discuss more general boundary conditions for H in

section 6.

The harmonic function corresponding to a source distribution of D3-branes ρ(x) (nor-

malized to one) is given by

H = L4

∫

d6y
ρ(y)

|x − y|4
, (3.5)

We show in appendix A that the asymptotics of this harmonic function can be written as

in (3.3) with coefficients

hkI = 2k(k + 1)L4

∫

d6xρ(x)
(

CI
i1···ik

xi1 · · · xik
)

(3.6)

where CI
i1···ik

is totally symmetric and traceless and the basis of CI is orthonormal. Com-

paring (3.6) with (2.4) we see that these coefficients are proportional to the vevs of the

CPOs.

In the case of a uniform distribution of D3 branes on a disc of radius l one can straight-

forwardly do the integral in (3.6) [6] with the result being

h2n0 = L42n
√

2n + 1l2n (3.7)

where I = 0 signifies that only harmonics that are singlets under the decomposition

SO(6) → SO(2) × SO(4) are involved.

Finally let us comment on the case of a spherical shell of D3 branes of radius R, for

which the harmonic function is [7]

H =
L4

r4
, r ≥ R; H =

L4

R4
, r < R, (3.8)

so the geometry is flat within the shell. The asymptotics of this harmonic function are triv-

ially of the form (3.3), with the absence of any perturbation relative to AdS corresponding

to the fact that there are no vevs for CPOs, since there are no SO(6) singlet CPOs. The

interpretation of constant terms in the harmonic function will be discussed in section 6.

4. General method for extracting vevs

In this section we will give a brief review of the methods developed in [6] for extracting vevs

from a given asymptotically AdS5 × S5 geometry. The first step is to write the solution as
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the AdS5 × S5 solution plus a deviation1

gMN = go
MN + hMN, (4.1)

FMNPQR = F o
MNPQR + fMNPQR.

where go
MN and F o

MNPQR are the metric and 5-form of the AdS5×S5 solution. (The solutions

under consideration here do not involve the other supergravity fields, so we restrict our

discussion to the metric and five form.) Next we expand the perturbations hMN, fMNPQR

in S5 harmonics. The general expansion is given in [6]; here we only quote the following

two components since these will be useful later:

ha
a(x, y) =

∑

πI1(x)Y I1(y) (4.2)

fabcde(x, y) =
∑

bI1(x)ΛI1εabcdeY
I1(y) (4.3)

where Y I1 are scalar spherical harmonics and ΛI1 is the eigenvalue of the scalar harmonic

under (minus) the d’Alembertian. It is convenient to introduce the following linear combi-

nations of πI1 and bI1

sI1 =
1

20(k + 2)
(πI1 − 10(k + 4)bI1), tI1 =

1

20(k + 2)
(πI1 + 10kbI1), (4.4)

since these combinations are mass eigenstates of the linearized field equations around

AdS5 × S5 [13]. The sI1 fields correspond to the chiral primary operators in (2.1) and

the tI1 fields to half supersymmetric operators of the schematic form TrF 4Xk.

There are three ingredients that enter into the map from coefficients of the harmonic

expansion in (4.2) to vevs in the dual QFT. The first is the construction of gauge invariant

variables, if the solution is not in de Donder gauge (which indeed is often not a convenient

gauge choice for the asymptotic expansion). De Donder gauge, Dah(ab) = Dahaµ = 0,

means that the harmonic expansion of the metric deviations does not involve terms with

derivatives of the harmonics. It is easy to see that the CB metrics (3.1) in the coordi-

nate system where (3.3) holds satisfy this requirement (but notice that the CB solutions

expressed in the coordinates of [9] are not in de Donder gauge, as discussed in [6]). So

since we can conveniently work in de Donder gauge here, we do not need to review the

construction of gauge invariant variables (and we simplify our notation relative to [6] by

dropping the tildes and hats from our notation).

The second ingredient is the non-linear KK map from ten dimensional fields to five

dimensional ones. For simplicity let us restrict to the subsector involving s2 and s4 fields

that are singlets under SO(6) → SO(2) × SO(4). The non-linear reduction map to second

order in the fields reads [14]

S2 =

√
8

3

(

s2 − 2
√

3

15
(s2)2 − 1

12
√

12
Dµs2Dµs2

)

(4.5)

S4 =
2
√

3

5

(

s4 − 83

18
√

5
(s2)2 − 7

18
√

5
Dµs2Dµs2

)

1We follow the conventions of [6]. Our index conventions are: M, N, . . . are 10d indices, µ, ν, . . . are

AdS5 indices, a, b, . . . are S5 indices. x denotes AdS coordinates and y S5 coordinates.
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where capital letters denote five dimensional fields and small letters ten dimensional fields.

The fields S2 and S4 defined by (4.5) solve the five dimensional equations up to second

order

¤S2 = − 4√
6
(S2)2, ¤S4 = 0. (4.6)

In (4.5)-(4.6) we have included only terms that can potentially contribute to the asymptotic

expansion of S2 and S4 up to the order required for extraction of vevs. More generally to

extract the vev of the operator dual to S∆ one would need to retain terms involving up to

∆/2 fields. The overall field normalization is chosen such that in the 5d action, all fields

are canonically normalized, apart from an overall factor of N2/2π2.

The final step is to use the method of holographic renormalization to extract the vevs

from the asymptotics of the 5d fields. This is by now a standard procedure (see [15] for a

review), except that here one needs to include additional terms to accommodate extremal

couplings (see section 5.4 of [6]). The relation between field asymptotics and vevs is most

transparent in Hamiltonian variables where the radius plays the role of time. The 1-point

functions are then related to the radial canonical momenta of the bulk fields [16]. For

the operators O2 and O4 (which are singlets under SO(6) → SO(2) × SO(4)) the relations

are [6]:

〈O4〉 = π2
(2)

〈O4〉 = π4
(4) +

3N4√
5N 2

2 N
(π2

(2))
2 (4.7)

where πm
(k) indicates the part of the canonical momentum of the field Sm that scales with

weight k and Nk are the normalization factors given in (2.2). The relevant part of the

canonical momenta can be expressed in terms of the asymptotic expansion of the 5d fields

as follows

πk
(2k−4) =

N2

2π2
(2k − 4)[Sk]k (4.8)

where the notation [A]k indicates the coefficient of the zk term in A and z is the Fefferman-

Graham radial coordinate. The relation (4.8) holds for k 6= 2; when k = 2 one should

replaces the factor (2k − 4) by 2.

For reasons which will become clear later it is useful to express the vevs directly in

terms of the coefficients that appear in the 10d solution. Using the results reviewed above

one obtains

〈O2〉 =
N2

2π2

2
√

8

3
[s2]2 (4.9)

〈O4〉 =
N2

2π2

4
√

3

5
[2s4 +

37

9
√

5
(s2)2 − 7

9
√

5
(Ds2)2]4 (4.10)

The expression for 〈O4〉 can be further simplified for solutions with s2 only depending

on the radial coordinate, such as those under consideration in this paper. In such cases,

[(Ds2)2]4 = 4[(s2)2]4 and we obtain

〈O4〉 =
N2

2π2

4
√

3

5
[2s4 +

1√
5
(s2)2]4. (4.11)
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The general method outlined here can be applied to extract the vevs of all other higher

dimension operators. However, the procedure becomes complex as the operator dimension

increases, since one has to retain terms to higher and higher order in the reduction map,

the field equations and the relations which give the vevs. The purpose of the current paper

is to point out that simplifications occur for the Coulomb branch solutions: for these we

will be able to carry out the vev computation for arbitrarily high dimension operators.

5. Obtaining the vevs

We now return to the Coulomb branch solutions and express the harmonic function as

H =
L4

r4
+ δH, (5.1)

i.e. we separate the k = 0, I = 0 term in (3.3) that yields the AdS5×S5 part of the solution

from the remaining terms. The metric and five form field become

ds2 = L2r2(1 +
r4δH

L4
)−

1
2 dx2

|| + L2(1 +
r4δH

L4
)
1
2 (

dr2

r2
+ dΩ2

5); (5.2)

F5 = (L4 − 1

4
r5∂rδH)dΩ5 + 1

4r3dr ∧ ∗S5Da∆H + 1
4d(L4r4(1 +

δHr4

L4
)−1) ∧ ω||.

Note that the coordinates on R3,1 have been rescaled as

x|| → L2x|| (5.3)

so that the metric scales as L2.

This coordinate system is manifestly compatible with the de Donder gauge for fluc-

tuations; we can immediately read off the following expression for the field bI
k in (4.2)

as

bI
k = − hkI

4L4krk
(5.4)

whilst the trace of the fluctuation on the sphere is

π = 5

(

(1 +
r4δH

L4
)1/2 − 1

)

. (5.5)

Retaining only linear terms in the expansion of the square root gives

πI
k =

5hkI

2L4rk
. (5.6)

Note however that there is no justification generically for retaining only the linear term.

Indeed the quadratic correction gives

− 5

8z(k)

∑

k1,I1,I2

1

L8rk
hk1I1h(k−k1)I2

〈

Y I1
k1

Y I2
(k−k1)

Y I
k

〉

, (5.7)

where the term in angled parenthesis indicates the triple overlap of the scalar harmonics.

This term is not suppressed compared to the linear term (recall the hkI contain a factor of

L4 so the factors of L cancel in (5.7)); there is no small parameter in general. The issue

– 7 –
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of non-liner terms first appears for dimension 4 operators. In this case we constructed

the holographic map from first principles in [6], as reviewed in the previous section, so we

should be able to understand whether the quadratic corrections contribute. Notice that

since hkI is proportional to the vev of a chiral primary operator, the quadratic correction

looks like a double trace contribution.

To understand this issue let us restrict to the special case of a disc distribution which

was the case understood in detail in [6]. In this case s2 and s4 are given by

s2 =
1

8
h20, s4 =

1

16
h40 −

1

128
√

5
(h20)

2, (5.8)

where h20 and h40 are given in (3.7). The term in s4 quadratic in h20 comes from (5.7).

Inserting these values in the expression for the vevs (4.11) we find that the (h20)
2 part

of s4 is precisely cancelled by the (s2)
2 term! The remaining terms are exactly right to

reproduce (2.5). Notice that the (s2)
2 terms in (4.11) originate from two sources. One is

the non-linear terms in the KK map and the second are the non-linear terms in the 1-point

function (4.7). Based on this result we conjecture that the same type of cancellation will

occur for all operators in the general case.

So now let us return to the general case and assume that such a cancellation takes place.

We thus retain only the linear term (5.6) and ignore non-linear terms in the KK map and

non-linear terms in the 1-point function. The 10d fluctuations under these assumptions

are

sI
k =

hkI

4kL4rk
, tIk = 0, (5.9)

so the canonically normalized five dimensional fields are equal to

SI
k =

√

(k − 1)

2k/2
√

k(k + 1)

hkI

L4rk
, T I

k = 0, (5.10)

where for completeness we also quote the values of the t field. This implies the following

expression for the vev

〈

OI
k

〉

=
N2

2π2
(2k − 4)[SI ]k =

N2

π2

(k − 2)
√

(k − 1)

2k/2
√

k(k + 1)

hkI

L4
, (5.11)

for k 6= 2 whilst the formula for k = 2 follows using the replacement (k − 2) → 2. Using

the identity (3.6) then gives a final expression for the vev as

〈

OI
k

〉

=
N2

π2
2k/2(k − 2)

√

k − 1

k

∫

d6x′ρ(x′)(CI
i1···ik

(x′)i1 · · · (x′)ik), (5.12)

for k 6= 2 with the analogous expression for k = 2 being obtained by the replacement

(k − 2) → 2. To match supergravity and field theory normalizations, field theory lengths

must be scaled by a factor of
√

λ/2π2. This is due to the rescaling in (5.3) and is explained

in section 6.3 of [6]. Taking this factor into account we find exact agreement between the

supergravity and field theory computations in (5.12) and (2.4)!

– 8 –
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This result is highly non-trivial: whilst all the vevs must necessarily be encoded in

the harmonic function, it is surprising that one can extract them so simply by the above

linearization of the ten-dimensional fields. Note that this procedure for extracting the

Coulomb branch vevs was suggested in [8], although the interpretation of the neglected

terms was and remains unclear. Presumably the linearization can be rigorously justified in

this case by proving that the non-linear terms cancel when one carries out the holographic

renormalization procedure directly in ten dimensions. This issue is currently under inves-

tigation.

One would also not anticipate that there is an analogous route for extracting vevs

from general asymptotically AdS5 × S5 solutions. In the CB example, the simplifications

arose when we expanded the solution in a particular radial coordinate, which turned out

to be exactly the Fefferman-Graham coordinate, and then linearized in a natural way. Had

we expanded the same solutions in the coordinate systems of [9], we would have had no

motivation for retaining the required “linearized” subset of terms in the perturbations.

Indeed, in the discussion of the disk distribution in [6], only the complete gauge invariant

fields πI
k played a role. For more general supergravity solutions, even those such as the

bubbling geometries of [17] which are built from harmonic functions, it is not immediately

apparent how one would extend the above procedure or why it should be justified. By

contrast, the method for extracting vevs presented in [6] applies to all asymptotically

AdS5 × S5 solutions.

6. Duals of 1/2-susy deformations of N = 4 SYM

In section 3 we discussed the supergravity solution (3.1) describing a distribution of D3-

branes. The harmonic function H entering the solution was constrained to vanish as r−4

in order for the solution to be asymptotically AdS. We discuss here solutions obtained

by relaxing this condition, and their interpretation using the AdS/CFT dictionary, in

particular using the map between ten dimensional fields and the gauge theory discussed in

the previous section.

The most general solution of (3.2) is

H =
∑

k,I

(

lkIr
k +

hkI

rk+4

)

Y I
k (6.1)

The case with only the k = I = 0 terms is D3 brane solution with the asymptotically flat

region included. The more general solution (6.1) still preserves 16 supercharges, and as we

will shortly see, surprisingly admits an AdS/CFT interpretation despite the fact that the

solution is not asymptotically AdS (in any usual usage of the word).

We proceed as in the previous section by writing

H =
L4

r4
+ δH (6.2)

and keeping only the linear term in δH. The terms proportional to hkI have been discussed

already, so we only consider here the new terms proportional to lkI . From the metric and
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five-form we read off

πI
k =

5lkI

2L4
rk+4, bI

k =
lkI

4(k + 4)L4
rk+4. (6.3)

Forming the s and t combinations we obtain

sI
k = 0, tIk =

lkI

4(k + 4)
rk+4. (6.4)

The radial behavior of the t field is exactly right for the solution to correspond to a

deformation of the N = 4 SYM theory by the operators dual to the tk fields, with the

deformation parameter being (proportional to) lkI . The restriction of keeping only linear

terms in δH may be justified by considering the deformation parameters lkI to be small

(although the results may hold more generally due to cancellations as in the case of hkI).

Such a deformation was discussed in [18] where it was argued that the gauge beta

function continues to vanish. This corresponds to the fact that the dilaton and axion are

constant in the solutions we discuss. In the same paper, it was argued (extending earlier

work [19, 20]) that the full D3-brane solution (with the asymptotic flat region included) is

dual to N = 4 SYM deformed by a dimension 8 operator. This is precisely the operator

dual to t0. In this paper we generalize this proposal to the general case of a deformation by

all operators dual to tk. It is easy to check that all symmetries (susy, R-symmetry) match

between the supergravity and field theory descriptions. Notice that the operators tk are

irrelevant so one expects a strong backreaction on the asymptotics of the dual geometry. It

would be interesting to explore this case further, especially since the geometry is far from

being asymptotically AdS so one may learn about how holography works in more general

contexts.
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A. The addition theorem for SO(6) spherical harmonics

In this appendix we prove (3.6). The harmonic function

H = L4

∫

d6y
ρ(y)

|x − y|4
, (A.1)

can be expanded in powers of r =
√

x2 as

H =
L4

r4

∫

d6yρ(y)
∑

n≥0

(−1)n(n + 1)

(

y2

r2
− 2r

x̂ · ŷ
r

)n

; (A.2)

=
L4

r4

∫

d6yρ(y)
∑

n≥0

n
∑

m=0

(−1)n+m(n + 1)
2mn!

m!(n − m)!

y2n−m cosm(γ)

r2n−m
, (A.3)
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where x̂ and ŷ are unit vectors and cos(γ) = x̂ · ŷ. Collecting together terms of the same

radial power we obtain

∑

n≥0

n
∑

m=0

(−1)n+m(n + 1)
2mn!

m!(n − m)!

y2n−m cosm(γ)

r2n−m
=

∑

k≥0

yk

Rk
P

3/2
(3+2k)/2(cos γ), (A.4)

where P
3/2
(3+2k)/2(cos γ) is an associated Legendre polynomial satisfying the following differ-

ential equation
(

(1 − z2)∂2
z − 5z∂z + k(k + 4)

)

P
3/2
(3+2k)/2(z) = 0. (A.5)

Now introducing the following coordinates on the S5

ds2 = dθ2 + sin2 θdΩ2
4, (A.6)

SO(5) singlet spherical harmonics satisfy the differential equation

1

sin4 θ
∂θ(sin

4 θ∂θ)Yk = −k(k + 4)Yk, (A.7)

which is the same equation as (A.5) with z = cos θ. The canonically normalized spherical

harmonics are therefore given by

Yk(θ) =

√
3

2k/2(k + 1)
√

(k/2 + 1)(k + 3)
P

3/2
(3+2k)/2(cos θ) ≡ λkP

3/2
(3+2k)/2(cos θ); (A.8)

with the values on the axis θ = 0 being

Yk(0) =

√

(k/2 + 1)(k + 3)√
32k/2

≡ yk. (A.9)

Note that spherical harmonics which are not SO(5) singlets take the form Y p
k (θ)Ypk(θ4)

with θ4 an S4 angle and

1

sin4 θ
∂θ(sin

4 θ∂θ)Y
p
k − p(p + 3)

sin2 θ
Y p

k = −k(k + 4)Y p
k , (A.10)

and p is the SO(5) eigenvalue (on the S4) with p ≤ k. The relevant solutions are

P
p+3/2
(3+2k)/2(cos θ), (A.11)

which behave as sink(θ)fp−k[cos θ] for k > 0 (where fp−k is a polynomial of degree (p−k))

and thus vanish when θ = 0. Thus only the SO(5) singlet spherical harmonics are non-

vanishing at θ = 0.

Comparing (A.4) with (3.6) implies that the following identity needs to be proved

P
3/2
(3+2k)/2(cos γ) = 2k(k + 1)

∑

I

Y I
k (θy

5)Y I
k (θ5), (A.12)

where we use the identity

CI
i1···ik

yi1 · · · yik = ykY I
k (θy

5), (A.13)
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with (θy
5) the coordinates on the y 5-sphere. Now (A.12) is the exact analogue of the

addition theorem for spherical harmonics of SO(3) used in electromagnetism and can be

proved in exactly the same way [21]. First note that in the coordinate system (A.6) on the

sphere

cos γ = cos θ cos θy + sin θ sin θy(cos γ4), (A.14)

where γ4 is the angle separating the vectors on the S4. Thus when θy = 0 (it lies on the

“axis”) cos γ = cos θ. Since the SO(5) singlet harmonic is the only harmonic at level k

which is non-vanishing on the axis (A.12) collapses to

P
3/2
(3+2k)/2(cos γ) = 2k(k + 1)Yk(0)Yk(θ), (A.15)

an identity which is manifestly true because of (A.8) and (A.9).

Now consider rotating the axes so that θy is no longer zero. Then the function

P
3/2
(3+2k)/2(cos γ) still satisfies the covariant version of (A.5), namely

(¤ + k(k + 4))P
3/2
(3+2k)/2(cos γ) = 0, (A.16)

where ¤ is the Laplacian on the S5 with coordinates θ5. In other words, the function can

always be expanded in spherical harmonics of rank k as

P
3/2
(3+2k)/2(cos γ) =

∑

I

αI
k(θ

y
5)Y I

k (θ5), (A.17)

where the coefficients are given by

αI
k(θ

y
5) = z−1

k

∫

S5

dΩ5Y
I
k (θ5)P

3/2
(3+2k)/2(cos γ). (A.18)

However, a generic function can be expanded in terms of spherical harmonics as

f(θ5) =
∑

k,I

βkIY
I
k (θ5), (A.19)

where

βkI =
1

zk

∫

S5

dΩ5f(θ5)Y
I
k (θ5), (A.20)

and in particular for the SO(5) singlet coefficients

βk =
λk

zk

∫

S5

dΩ5f(θ5)P
3/2
(3+2k)/2(cos θ), (A.21)

so that f(θ = 0) =
∑

k βkyk. Then (A.18) is the SO(5) singlet coefficient in an expansion

of the function Y I
k (θ5)/λk in a series of Y I

k (γ, . . .) (i.e. with respect to the rotated axis

discussed earlier). One can thus read off the coefficient (A.18) as

αI
k(θ

y
5) =

1

ykλk
Y I

k (θ5(γ, . . .))γ=0 = 2k(k + 1)Y I
k (θy

5), (A.22)

since in the limit γ → 0 the angles (θ, . . .) go over into (θy, . . .). This completes the proof

of (A.12) and hence of (3.6). Note that (A.12) also implies a sum rule for harmonics of the

same degree:
∑

I

(Y I
k (θ5))

2 = 2−k(1 + k/2)(1 + k/3), (A.23)

analogous to that sometimes used in electromagnetism.
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